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Molecular Biology & Causality

Heaviness of “causality networks”

Causality loops

Counter-intuitive resulting behaviours

Predicting dynamics from models

Computer aided modelling methodologies

• quantitative approaches → e.g. differential equations

• qualitative approaches → logic & computer science can help

• mixed approaches → cf. Marcelline Kaufman

Biological questions are often of qualitative nature
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Formal Logic: syntax/semantics/deduction

cyan=Computer

green=Mathematics

correctness

Rulesproof

Semantics
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Syntax

Deduction
proved=satisfied

completeness

Formulae

red=Computer Science

M |= ϕ

Φ ⊢ ϕ

satisfaction
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Regulatory Networks

To model direct or indirect regulations between biological objects

(e.g. gene, macromolecule, signal, . . . )

Direct : transcription factor, operon, repressor, . . .

Indirect : cascade of events, capture of macromolecules, . . .

x induces y : x
+
−→ y

x inhibits y : x
−

−→ y

5



Mucus Production in P. aeruginosa

Capture:
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Static Graph & Dynamic Behaviour

Difficulty to predict the result of combined regulations

Difficulty to measure the strength of a given regulation

Example of “competitor” circuits

Positive v.s. Negative circuits

—

+

+

AlgU antiAlgU

mucus

+

Even v.s. Odd number of “—” signs

Multistationarity v.s. Homeostasy

René Thomas, Snoussi, . . . , Soulé

Functional circuits “pilot” the behaviour
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Multivalued Regulatory Graphs
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Definition of Regulatory Graphs

A labelled directed graph (V , E)

– each node of V is a variable x with a boundary bx ∈ IN ,

less or equal to the out-degree of x.

– each edge x→ y of E is labelled by ε ∈ {+,−} and

by s ∈ [0 · · · bx].

Variant: bipartite graph

– complexation of two proteins

– inhibition of a regulation

– external conditions. . .

x

y

z

ε

εz

sx
εx

sz

10



Regulatory Networks (R. Thomas)

Ky

1
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x y

+
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Basal level : Kx

x helps : Kx,x Ky,x

Absent y helps : Kx,y

Both : Kx,xy

(x,y) Image

(0,0) (Kx,y,Ky)

(0,1) (Kx, Ky)

(1,0) (Kx,xy,Ky)

(1,1) (Kx,x, Ky)

(2,0) (Kx,xy, Ky,x)

(2,1) (Kx,x, Ky,x)
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Resources in a Regulatory Network

States:

η : V → IN ( ≈ vector of integers)

η(x) = abstract concentration level of x

Variant: singular states (values can be the thresholds τ1, τ2,. . . )

Resources:

For each x
+,s
−→ y, x is a resource of y iff η(x) > s

For each x
−,s
−→ y, x is a resource of y iff η(x) ≤ s

Parameters:

Partial function K : V × P(V) → IN

Image:

Vector of the K(y, ω) where ω is the set of resources of y
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State Graphs

(x,y) Image

(0,0) (Kx,y , Ky)=(2,1)

(0,1) (Kx, Ky)=(0,1)

(1,0) (Kx,xy , Ky)=(2,1)

(1,1) (Kx,x, Ky)=(2,1)

(2,0) (Kx,xy , Ky,x)=(2,1)

(2,1) (Kx,x, Ky,x)=(2,1)
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by units of Manhattan distance
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Time has a tree structure
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Parameters & thresholds: often unknown

Thresholds for AlgU in P.aeruginosa are unknown:

—

+

+
—

+

+
—

+

+ antiAlgUAlgUAlgUAlgU antiAlgU antiAlgU

1 1 1

1 1 112 2

and parameters are unknown:

34 × 22 34 × 22 24 × 22

712 possible models

Some criteria exist to reduce the number of models,

but formal logic is needed to go further automatically

Note: some models are observably equivalent
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CTL = Computation Tree Logic

Atoms = comparaisons : (x=2) (y>0) . . .

Logical connectives: (ϕ1 ∧ ϕ2) (ϕ1 =⇒ ϕ2) · · ·

Temporal connectives: made of 2 characters

first character second character

A = for All path choices X = neXt state

F = for some Future state

E = there Exist a choice G = for all future states (Globally)

U = Until

AX(y = 1) : the concentration level of y belongs to the interval 1 in all

states directly following the considered initial state.

EG(x = 0) : there exists at least one path from the considered initial

state where x always belongs to its lower interval.
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Temporal Connectives of CTL

neXt state:

EXϕ : ϕ can be satisfied in a next state

AXϕ : ϕ is always satisfied in the next states

eventually in the Future:

EFϕ : ϕ can be satisfied in the future

AFϕ : ϕ will be satisfied at some state in the future

Globally:

EGϕ : ϕ can be an invariant in the future

AGϕ : ϕ is necessarilly an invariant in the future

Until:

E[ψUϕ] : there exist a path where ψ is satisfied until a state

where ϕ is satisfied

A[ψUϕ] : ψ is always satisfied until some state where ϕ is

satisfied
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Semantics of Temporal Connectives

t+1
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AXϕ

ϕ
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CTL to encode Biological Properties

Common properties:

“functionality” of a sub-graph

Special role of “feedback loops”
—

y
+

+ x
1

2

1

– positive: multistationnarity (even number of — )

– negative: homeostasy (odd number of — )
y

x

y

x(0,0) (1,0) (2,0)

(2,1)(1,1)(0,1) (0,1) (2,1)(1,1)

(2,0)(0,0) (1,0)

Characteristic properties: (x = 2) =⇒ AG(¬(x = 0))

and (x = 0) =⇒ AG(¬(x = 2))

They express “the positive feedback loop is functional”

(satisfaction of these formulae relies on the parameters K...)
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Theoretical Models ↔ Experiments

CTL formulae are satisfied (or refuted) w.r.t. a set of paths from a

given initial state

• They can be tested against the possible paths of the theoretical

models (M |=η ϕ)

• They can be tested against the biological experiments

(Biological_Object |=experiment ϕ)

CTL formulae link theoretical models and biological objects together

21



Model Checking

Computes all the states of a theoretical model which satisfy a given

formula: { η | M |=η ϕ }.

Idea 1: work on the state graph instead of the path trees.

Idea 2: check first the atoms of ϕ and then check the connectives of

ϕ with a bottom-up computation strategy.

Idea 3: (computational optimization) group some cases together

using BDDs (Binary Decision Diagrams).

Example : (x = 0) =⇒ AG(¬(x = 2))

Obsession: travel the state graph as less as possible
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(x = 0) =⇒ AG(¬(x = 2))

x=0 x=2
z
¬(x = 2)

z

x

y

x

y

and AG(¬(x = 2)) ?

. . . one should travel all the paths from any green box and check

if successive boxes are green: too many boxes to visit.

Trick: AG(¬(x = 2)) is equivalent to ¬EF (x = 2)

start from the red boxes and follow the transitions backward.
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Computer Aided Elaboration of Models

From biological knowledge and/or biological hypotheses, it comes:

• properties:

“Without stimulus, if gene x has its basal expression level,

then it remains at this level.”

• model schemas:

—

y
+

+ x
1

2

1

—

x y
+

+

2
1

1 . . .

Formal logic and formal models allow us to:

• verify hypotheses and check consistency

• elaborate more precise models incrementally

• suggest new biological experiments to efficiently reduce the

number of potential models
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The Two Questions

Φ = {ϕ1, ϕ2, · · · , ϕn} and M =
—

y
+

+ x
1

2

1 . . .

1. Is it possible that Φ and M ?

Consistency of knowledge and hypotheses. Means to select

models belonging to the schemas that satisfy Φ.

(∃? M ∈ M | M |= ϕ)

2. If so, is it true in vivo that Φ and M ?

Compatibility of one of the selected models with the biological

object. Require to propose experiments to validate (or refute)

the selected model(s).

→ Computer aided proofs and validations
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Question 1 = Consistency

1. Draw all the sensible regulatory graphs with all the sensible

threshold allocations. It defines M.

2. Express in CTL the known behavioural properties as well as

the considered biological hypotheses. It defines Φ.

3. Automatically generate all the possible regulatory networks

derived from M according to all possible parameters K....

Our software plateform SMBioNet handles this automatically.

4. Check each of these models against Φ.

SMBioNet uses model checking to perform this step.

5. If no model survive to the previous step, then reconsider the

hypotheses and perhaps extend model schemas. . .

6. If at least one model survives, then the biological hypotheses

are consistent. Possible parameters K... have been indirectly

established. Now Question 2 has to be addressed.
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Question 2 = Validation

1. Among all possible formulae, some are “observable” i.e., they

express a possible result of a possible biological experiment.

Let Obs be the set of all observable formulae.

2. Let Λ be the set of theorems of Φ and M.

Λ ∩Obs is the set of experiments able to validate the survivors

of Question 1. Unfortunately it is infinite in general.

3. Testing frameworks from computer science aim at selecting a

finite subsets of these observable formulae, which maximize the

chance to refute the survivors.

4. These subsets are often too big but in some cases, these testing

frameworks can be applied to regulatory networks.

It has been the case of the mucus production of P.aeruginosa.
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Mutation, Epigenesis, Adaptation

Terminology about phenotype modification:

genetic modification: inheritable and not reversible (mutation)

epigenetic modification: inheritable and reversible

adaptation: not inheritable and reversible

The biological questions (Janine Guespin):

are mucus production and/or cytotoxicity in Pseudomonas

aeruginosa due to an epigenetic switch ?

[→ cystic fibrosis]
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Mucus production in P. aeruginosa

Pseudomonas aeruginosa: (J.Guespin, M.Kaufman)

—

+

+

AlgU antiAlgU

mucus

+

. . . mutation:

+

+

AlgU

mucus

Epigenetic Hypothesis (without mutation) =

→ The positive feedback circuit is functional, with a mucoid stable

state and another non mucoid stable state.

→ An external signal (in the cystic fibrosis’ lungs) could switch

AlgU from its lower stable state to the higher one.

→ The mutation could be favored later because the inhibitor

complex is toxic for the bacteria. =⇒ New possible therapy.
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Cytotoxicity in P. aeruginosa

(Janine Guespin)

toxicity

—

+

+

ExsA ExsD+

Epigenetic hypothesis =

→ The positive feedback circuit is functional, with a cytotoxic

stable state and the other one is not cytotoxic.

→ An external signal (in the cystic fibrosis’ lungs) could switch

ExsA from its lower stable state to the higher one.
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Consistency of the Hypothesis

toxicity

—

+

+

ExsA ExsD+

One CTL formula for each stable state:

(ExsA = 2) =⇒ AXAF (ExsA = 2)

(ExsA = 0) =⇒ AG(¬(ExsA = 2))

Question 1, consistency: proved by Model Checking

→ 10 models among the 712 models are extracted by SMBioNet

Question 2: and in vivo ? . . .
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Validation of the epigenetic hypothesis

Question 2 = to validate bistationnarity in vivo

Non cytotoxic state: (ExsA = 0) =⇒ AG(¬(ExsA = 2))

P. aeruginosa, with a basal level for ExsA does not become

spontaneously cytotoxic: actually validated

Cytotoxic state: (ExsA = 2) =⇒ AXAF (ExsA = 2)

Experimental limitation:

ExsA can be saturated but it cannot be measured.

Experiment:

to pulse ExsA and then to test if toxin production remain.

(⇐⇒ to verify a hysteresis)

This experiment can be generated automatically
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To test (ExsA=2)=⇒AXAF (ExsA=2)

ExsA = 2 cannot be directly verified but toxicity = 1 can be

verified.

toxicity

—

+

+

ExsA ExsD+

Lemma: AXAF (ExsA = 2) ⇐⇒ AXAF (toxicity = 1)

(. . . formal proof by computer . . . )

→ To test: (ExsA = 2) =⇒ AXAF (toxicity = 1)
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(ExsA = 2) =⇒ AXAF (toxicity = 1)

A =⇒ B true false

true true false

false true true

Karl Popper:

to validate = to try to refute

thus A=false is useless

experiments must begin with a pulse

The pulse forces the bacteria to reach the initial state ExsA = 2.

If the state were not directly controlable we had to prove lemmas:

(ExsA = 2) ⇐= (something reachable)

General form of a test:

(something reachable) =⇒ (something observable)
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Concluding Slogans

• Behavioural properties (Φ) are as much important as models

(M) for the modelling activity

• Modelling is significant only with respect to the considered

experimental reachability and observability (Obs)

• The bigger is the risk of refutation, the better are the

“surviving” models (Popper), thus models should be “simple”

with few non observable parameters (Occam)

Formal methods (syntax/semantics/proofs) facilitate abstraction

and consequently they simplify models

• They ensure consistency of the modelling activity

• They allow us to perform computer aided validations of models

• They take benefit of 30 years of researches in computer sciences
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